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Abstract
We construct the wavefunctions for the Moore–Read ν = 5/2 quantum Hall
state on a torus in the presence of two quasiholes. These explicit wavefunctions
allow us to compute the monodromy matrix that describes the effect of quasihole
motion on the space of degenerate ground states. The result agrees with the
recent discussion by Oshikawa et al (Ann. Phys. at press). Our calculation
provides a conformal field theory explanation of why certain transitions
between ground states are forbidden. It is because taking a quasihole around a
generator of the torus can change the fusion channel of the two quasiholes, and
this requires a change of parity of the electron number in some of the ground
states.

PACS numbers: 73.43.Fj, 73.43.Jn

1. Introduction

The degeneracy, first noted in numerical work by Yoshioka et al and Su [1], of the fractional
quantum Hall ground state on a torus is an essential feature of such states. In its absence,
Laughlin’s general gauge argument would require the Hall conductance to be an integer.
Explicit wavefunctions for Laughlin states on a torus were written by Haldane and Rezayi
[2], who identified the degeneracy as arising from translations of the centre of mass of the
incompressible Hall fluid. Later, Wen and Niu realized [3] that the degeneracy persists even
in the absence of translation symmetry and that the degree of degeneracy was sensitive to
the global topology of the space in which the Hall fluid resides. This observation leads them
to introduce the notion of topological order as a characterization of the strongly correlated
ground state. Moore and Read [4] revealed the more general structure of topological order
by pointing out its connection to rational conformal field theory. Since topological order is
distinguished by the quantum numbers of ground state and excitations, a change of topological
order requires a quantum phase transition corresponding to a substantial rearrangement of the
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many-body Hilbert space. Such phase transitions are not usually associated with symmetry
breaking, and the resulting topological phases possess no conventional order parameters. They
therefore fall outside the conventional Landau theory of phase transitions.

It is possible for a quantum fluid to have topologically degenerate states even when
it lives on the plane. The degree of degeneracy then depends on the number and type of
vortex-like defects in the fluid. Braiding these defects produces transitions between the
topologically protected degenerate states, and it has been suggested that such manipulations
may be exploited for quantum computation [5]. One such topological phase, the Moore–Read
Pfaffian state, is the likely candidate for the observed ν = 5/2 quantum Hall state [4]. The
Pfaffian wavefunction is easy to write on the plane. When the fluid is placed on a torus,
however, the wavefunction becomes more complicated. Counting the number of degenerate
states is harder than counting the number states for a Laughlin fractional quantum Hall state,
and the answer depends on whether the number of electrons in the system is odd or even.
Nonetheless, the ground-state wavefunctions have been constructed [6–8]—although some
issues still remain. Using general principles that do not require knowledge of the explicit
Pfaffian wavefunctions, and by building on what is understood for Abelian quasiparticles [9],
Oshikawa et al [10] have identified the topological quasiparticle operations that transform one
Moore–Read ground state to another.

In this paper, we investigate how the topological operations of Oshikawa et al’s affect
the many-electron wavefunctions. To do this, we first construct the Moore–Read Pfaffian
states on a torus in the presence of two quasihole excitations. We then explicitly exhibit
their transformation properties under topological operations on the quasihole positions. In
this process, we provide a conformal field theory explanation of why the monodromy matrix
acting on the space of the degenerate ground states should be block-diagonal with respect to
the parity of the spin structure. It is because the spin structure dictates both the fusion channel
of two quasiholes and the parity of the number of electrons.

2. Laughlin states

Before tackling the Pfaffian state, it helps to recall the properties of the simpler Laughlin
states on a torus [2, 7, 11]. A torus can be regarded as a rectangle with sides Lx and Ly

periodic boundary conditions. In the Landau gauge, with A = −Byx̂, the periodic boundary
conditions on the wavefunction are twisted by a gauge transformation that is necessary to
prepare a particle that leaves the top edge of the rectangle for its reappearance at the bottom
edge. For a single electron we have

ψ(x + Lx, y) = ψ(x, y) ψ(x, y + Ly) = exp(−iLyx/l2)ψ(x, y), (1)

where l = √
h̄/eB is the magnetic length of the system. This twisted boundary condition

must continue to hold, particle by particle, for the many-particle wavefunction. In our Landau
gauge, the lowest Landau level many-particle wavefunction takes the form

�
(
r1, r2, . . . , rNe

) = exp

(
−
∑

i

y2
i

/
2l2

)
f
(
z1, z2, . . . , zNe

)
, (2)

where zi = (xi + iyi)/Lx and f is a holomorphic function in each of zi . Combining
equations (1) and (2) shows that f must satisfy the following quasi-periodicity conditions:

f (z1, . . . , zi + 1, . . .) = f (z1, . . . , zi, . . .),
(3)

f (z1, . . . , zi + τ, . . .) = exp[−iπNs(2zi + τ)] · f (z1, . . . , zi, . . .).
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Here, τ = iLy/Lx and Ns = LxLy/2πl2 is the number of flux quanta passing through the
torus. (These conditions on f preserve their form for a torus which is a periodic parallelogram,
rather than a rectangle. In this case τ is no longer purely imaginary, but should retain a positive
imaginary part.)

By integrating d/dzi

[
ln f

(
z1, . . . , zNe

)]
around the boundaries of the rectangle, and using

equation (3) to combine the contributions of the opposite sides, we see that the number of
zeros of f , considered as a function of zi , is Ns . The precise locations of these Ns zeros will
depend on the positions of the other zj , but they are subject to a non-trivial constraint [11].
Suppose that g(z) is meromorphic and doubly periodic:

g(z) = g(z + 1) = g(z + τ). (4)

By evaluating the integral

I = 1

2π i

∮
z
g′(z)
g(z)

dz (5)

around the edges of the period parallelogram 0 → 1 → 1 +τ → τ → 0, and again combining
the contributions from opposite sides, we find that

I = m + nτ (6)

where m and n are integers. On the other hand, if the poles of g(z) in the period parallelogram
are at z = bi and the zeros at z = ai , then I = ∑

i ai − ∑
i bi . Taken together with

equation (6), this means that the sum of zeros minus the sum of poles vanishes modulo
periods. This is Abel’s theorem for the torus [12]. Although f

(
z1, . . . , zNe

)
is it not doubly

periodic, the ratio

g(z) ≡ f
(
z, , z2 . . . , zNe

)/
f
(
z, z′

2 . . . , z′
Ne

)
(7)

is a doubly periodic meromorphic function whose zeros are at the zeros of f
(
z, z2 . . . , zNe

)
and whose poles are at the zeros of f

(
z, z′

2 . . . , z′
Ne

)
. Consequently, the sum of Ns zeros of

f
(
z1, z2, . . . , zNe

)
considered as a function of z1 is independent of other electron coordinates.

The same is true of the zeros of f considered as a function of any of zi .
The defining characteristic of Laughlin wavefunction at filling fraction 1/q (where q is

an odd integer and Ns = qNe) is that it vanishes as (zi − zj )
q as any zi approaches any other

zj . When combined with the condition discussed in the last paragraph, namely that the sum
of all zeros for each zi should be constant, the only possible form of the holomorphic part of
the wavefunction for the Laughlin state on the torus is [2, 11]

f
(
z1, z2, . . . , zNe

) = Fcm

(∑
i

zi

)∏
i<j

[ϑ1(zi − zj )]
q . (8)

Here Fcm(Z) is a holomorphic function possessing q zeros, and ϑ1(z) is one of the four Jacobi
theta functions:

ϑ1(z) = −ϑ

[
1/2
1/2

]
(z|τ),

ϑ2(z) = ϑ

[
1/2
0

]
(z|τ),

(9)

ϑ3(z) = ϑ

[
0
0

]
(z|τ),

ϑ4(z) = ϑ

[
0

1/2

]
(z|τ),
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where the theta function with characteristics is defined as

ϑ

[
a

b

]
(z|τ) =

∞∑
n=−∞

exp[iπτ(n + a)2 + 2π i(n + a)(z + b)]. (10)

We will usually write the theta function with characteristics as ϑ[α](z, τ ) where α is the vector
(a, b)T .

Each of the theta functions possesses a single zero in the period parallelogram, but note
that for a, b ∈ Z/2

ϑ[α](−z, τ ) = (−1)4abϑ[α](z, τ ), (11)

so only ϑ1 obeys ϑ1(−z) = −ϑ1(z) and has its zero at z = 0. All theta functions are
quasi-periodic, and, in particular,

ϑ1(z + 1) = −ϑ1(z),
(12)

ϑ1(z + τ) = − exp[−iπ(2z + τ)]ϑ1(z).

Equations (3), (8) and (12), together with Ns = qN , require the following quasi-periodicity
conditions for Fcm(Z) [2]:

Fcm(Z + 1) = (−1)(Ns−q)Fcm(Z),
(13)

Fcm(Z + τ) = (−1)(Ns−q) exp[−iπq(2z + τ)]Fcm(Z).

A convenient basis for such Fcm(Z) is provided by the set of q functions [7, 13]:

F (m)
cm (Z) = ϑ

[
m/q + (Ns − q)/2q

−(Ns − q)/2

]
(qZ|qτ), (14)

where m is an integer defined mod q. The resulting set of q linearly independent wavefunctions
differ only by a rigid translation along the y-direction, and in the limit Ne → ∞ each electron
needs move only infinitesimal amount to cause this shift. The distinct wavefunctions are
locally indistinguishable, and local perturbations change the energy of these states by same
amount. The q-fold degeneracy is therefore unaffected by such local perturbations.

If now Nh quasiholes are inserted at wi , then Ns = qNe + Nh. Since f should now vanish
to the first power as zi → wj , the only way to have the sum of the zeros of each zi independent
of {wj } is to set [2, 11]

f (m)
(
z1, z2, . . . , zNe

) = F (m)
cm

(∑
i

zi +

∑
j wj

q

)∏
i,j

ϑ1(zi − wj)
∏
i<j

[ϑ1(zi − zj )]
q . (15)

It is useful to include a purely {wj }-dependent part to the wavefunction normalization so that

�(m)
(
r1, . . . , rNe

; R1, . . . , RNh

)
= exp

(
−
∑

i

y2
i

2l2

)
exp


−

∑
j

η2
j

2ql2


F (m)

cm

(∑
i

zi +

∑
j wj

q

)

×
∏
i<j

[ϑ1(wi − wj)]
1/q

∏
i,j

ϑ1(zi − wj)
∏
i<j

[ϑ1(zi − zj )]
q, (16)

where wi = (ξi + iηi)/Lx and R = (ξ, η). It was argued by Einarsson [14] that taking one
quasihole around another on a torus should result in the same phase factor on a torus as on
plane and this factor is accounted for by

∏
i<j [ϑ1(wi − wj)]1/q . The exponent of the new

Gaussian factor can be explained by the fact that the charge of a quasihole is e/q. These



Explicit monodromy of Moore–Read wavefunctions on a torus 4927

added factors in equation (16) should therefore have converted all Berry phases into explicit
monodromies.

One can easily check that for {zi} boundary conditions of equation (16) are exactly that
of equation (1), provided that Ns of equation (13) is equal to qNe + Nh. Under a straight-line
analytic continuation z → z ± 1 we have

[ϑ1(z)]
1/q → exp(± iπ/q)[ϑ1(z)]

1/q (17)

and as z → z ± τ we have

[ϑ1(z)]
1/q → exp(∓ iπ/q) exp

[
− iπ

q
(±2z + τ)

]
[ϑ1(z)]

1/q . (18)

Also note for the centre-of-mass wavefunction:

F (m)
cm (Z ± 1/q) = (−1)Ne e±π i(Nh−q)/q exp

[
±2π i

m

q

]
F (m)

cm (Z),

(19)
F (m)

cm (Z ± τ/q) = (−1)Ne e±π i(Nh−q)/q exp[−π i(±2z + τ/q)]F (m±1)
cm (Z).

Taking a quasihole around one of the generators of the torus therefore affects the following
transformations: under Ri → Ri ± Lx x̂ we have

�(m)
(
r1, . . . , rNe

; R1, . . . , Ri , . . .
) → exp

[
±2π i

(
m

q
+

2Nh − q − 1

2q

)]
×�(m)(r1, . . . , rNe

; R1, . . . , Ri , . . .), (20)

and under Ri → Ri ± Ly ŷ we have

�(m)
(
r1, . . . , rNe

; R1, . . . , Ri , . . .
) → −e±iπ/q exp(∓ iLyξi/ql2)

×�(m±1)
(
r1, . . . , rNe

; R1, . . . , Ri , . . .
)
. (21)

Equations (20), (21) reproduce the operator transformation of Wen and Niu [3] up to a gauge
transformation: motion of the quasihole about one torus generator reproduces the state up
to phase, and motion about the other generator rolls the ground state over into another one1.
These operations and their effects are analogous to the operations appearing in the Verlinde
algebra of conformal field theory.

3. Moore–Read state

The holomorphic part of the ν = 1/2 Moore–Read state wavefunction on the plane is

fMR(z1, . . . , z2n) = Pf

(
1

zi − zj

)∏
i<j

(zi − zj )
2, (22)

where the Pfaffian of a 2n-by-2n antisymmetric matrix is defined as

Pf(A) = 1

2nn!

∑
P∈S2n

sgn(P )

n∏
i=1

AP(2i−1),P (2i). (23)

Here P runs over all permutation of 2n objects. This wavefunction is an antisymmetric
polynomial in zi , the poles in the Pfaffian part having cancelled against some of the zeros in
the Laughlin–Jastrow factor. The suppression of these zeros by the Pfaffian factor increases the
amplitude for the one electron to approach another. The Pfaffian can therefore be considered to

1 The constant factor − exp(± iπ/q) can be taken care of if the ground-state wavefunction is redefined with suitable
phase factor.



4928 S B Chung and M Stone

indicate a pairing between electrons [6], and this pairing is closely related to the BCS pairing
in p + ip superconductors [8].

In constructing the Moore–Read wavefunctions on a torus we must satisfy the boundary
conditions (3). These boundary conditions come from the gauge choice and the fact that all
electrons are in the lowest Landau level; they do not depend on what correlated many-body
state the electrons are in.

Now the Pfaffian part is equal to the correlator of 2n chiral Majorana fermion fields of the
critical Ising model

〈ψ(z1) · · · ψ(z2n)〉 = Pf

(
1

zi − zj

)
. (24)

There is more than one way to put such a correlator on a torus. This is because we are free to
give the Ising fields periodic or antiperiodic boundary conditions around each generator. We
will see that there is an intricate interplay between the boundary conditions (3) required of the
physical electrons and the boundary condition choices we make for the Ising ψ’s.

3.1. Even-spin-structure sector

The Laughlin–Jastrow part of the wavefunction on the torus can be dealt with by the same
(zi − zj ) → ϑ1(zi − zj ) substitution as before. The 1/(zi − zj ) factors in the Pfaffian require
a more careful treatment. Because the Pfaffian contains sums of products any z-dependent
factors arising from the z → z + 1 or z → z + τ quasi-periodicity properties will not appear
as an overall common factor. Consequently, we should arrange that there are no z-dependent
factors at all, and simply setting 1/(zi − zj ) → 1/ϑ1(zi − zj ) will not do. A possible choice
is to set [6]

1

zi − zj

→ ϑ[α](zi − zj )

ϑ1(zi − zj )
(25)

for some choice of α = (1/2, 0)T , (0, 0)T , (0, 1/2)T . The functions ϑ[α](z)/ϑ1(z) now obey
the following boundary conditions:

ϑ[α](z + 1)

ϑ1(z + 1)
= −e2π ia ϑ[α](z)

ϑ1(z)
,

(26)
ϑ[α](z + τ)

ϑ1(z + τ)
= −e2π ib ϑ[α](z)

ϑ1(z)
.

These functions are proportional to the two-point functions

〈ψ(z)ψ(z′)〉α = ϑ ′
1(0)ϑ[α](z − z′)

ϑ[α](0)ϑ1(z − z′)
, (27)

for chiral Majorana fermions with different spin structures, i.e. with different periodic or
antiperiodic boundary conditions round the generators of the torus. At least one of these
boundary conditions must be antiperiodic. If this condition is not met, the fermion propagator
has a zero mode, and the usual two-point function does not exist. We are therefore at
the moment considering only even-spin structures, i.e. spin structures α = (a, b)T having
4ab an even integer. It should be noted once again that these periodic and antiperiodic
boundary conditions are merely properties of ingredients in the Pfaffian. We are not changing
the boundary conditions of the many-body wavefunction. Instead the sign factors are
accommodated by the centre-of-mass wavefunction. This means that the centre-of-mass
wavefunctions obtained by setting q = 2 in equation (14),

F̃ (m)
cm (Z) = ϑ

[
m/2 + (Ns − 2)/4

−(Ns − 2)/2

]
(2Z|2τ), (28)
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will no longer suffice. Instead there are distinct centre-of-mass wavefunctions for each
α = (a, b)T :

F (α,m)
cm (Z) = ϑ

[
m/2 + (Ns − 2)/4 + (1 − 2a)/4

−(Ns − 2)/2 − (1 − 2b)/2

]
(2Z|2τ). (29)

Here m is an integer defined mod 2. (It will be shown later that equation (28) is the centre-of-
mass wavefunction in the odd-spin structure.) The complete wavefunction

�(α,m)
(
r1, . . . , rNe

) = exp

(
−
∑

i

y2
i

/
2l2

)
F (α,m)

cm

(∑
i

zi

)

× Pf

(
ϑ[α](zi − zj )

ϑ1(zi − zj )

)∏
i<j

[ϑ1(zi − zj )]
2, (30)

with α = (1/2, 0)T , (0, 0)T or (0, 1/2)T , now satisfies the boundary conditions (3). Note
that the additional α-dependent terms that equation (29) possesses in comparison with
equation (28) ensures that that the boundary conditions of the total wavefunctions are same for
different α’s. The three spin-structure choices coupled with the two possible values of m in
equation (30) give us the six-fold degeneracy of the even-spin-structure Moore–Read state on
the torus [6, 8, 10].

Now we consider inserting quasiholes. A charge e/2 quasihole excitation in one of
these degenerate ground states is little different from a quasihole in a Laughlin state. Such a
quasihole has one quantum of flux and consequently Ns = 2Ne + 1. When an e/2 quasihole
is inserted at w, the holomorphic part of the wavefunction becomes

f (α,m)
(
z1, . . . , zNe

;w
) = F (α,m)

cm

(∑
i

zi +
w

2

)

× Pf

(
ϑ[α](zi − zj )

ϑ1(zi − zj )

)∏
i

ϑ1(zi − w)
∏
i<j

[ϑ1(zi − zj )]
2. (31)

When this quasihole is carried around the generators, the wavefunction equation (31) behaves
almost the same as the torus Laughlin wavefunction. Under w → w ± 1 we have

f (α,m)
(
z1, . . . , zNe

;w
) →




(−1)mf (α,m)
(
z1, . . . , zNe

;w
)
, α =

(
0
0

)
,

(
0
1
2

)

∓ i(−1)mf (α,m)
(
z1, . . . , zNe

;w
)
, α =

(
1
2

0

) (32)

and under w → w ± τ we have

f (α,m)
(
z1, . . . , zNe

;w
)

→




exp
[− iπNs

2 (±2w + τ)
]
f (α,m+1)

(
z1, . . . , zNe

;w
)
, α =

(
1
2

0

)
,

(
0
0

)

∓ i exp
[− iπNs

2 (±2w + τ)
]
f (α,m+1)

(
z1, . . . , zNe

;w
)
, α =

(
0
1
2

)
.

(33)

This is to be expected because creating the e/2 quasihole breaks no pairs and so has no
effect on the BCS pairing characterizing the Moore–Read state. (These transformations have
been discussed by Oshikawa et al in the operator language [10]. There, the monodromy was
associated with the adiabatic insertion of a unit flux quantum into the ‘holes’ of the torus.)
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The e/2 quasihole is not, however, the elementary excitation for the Moore–Read state.
By allowing pair-breaking, a charge e/2 quasihole with one quantum flux can fractionalize
into two charge e/4 quasiholes, each possessing a half quantum of flux [4, 8]. To construct a
wavefunction with two charge e/4 quasiholes, the Pfaffian part needs to be modified, as this
is the part that describes the BCS pairing.

There are three basic conditions to be considered when writing such a two-quasihole
wavefunction. The first is that when these two quasiholes are brought together we should
recover equation (31). The second condition is that if two paired electrons wind around a
single charge e/4 quasihole, it should result in accumulation of phase 2π . The third condition
is that, since the argument of the centre-of-mass wavefunction becomes

∑
i zi + (w1 + w2)/4,

the phase factor that multiplies the Pfaffian when we take zi → zi + τ should change to
accommodate this. Greiter et al obtained wavefunctions satisfying these three conditions [6].
The holomorphic part of their wavefunction is

f (α,m)
(
z1, . . . , zNe

;w1, w2
) = F (α,m)

cm

(∑
i

zi +
w1 + w2

4

)
Pf

(
Mα

ij

)∏
i<j

[ϑ1(zi − zj )]
2, (34)

with

Mα
ij = ϑ[α](zi − zj + w12/2)ϑ1(zi − w1)ϑ1(zj − w2) + (i ↔ j)

2ϑ1(zi − zj )
, (35)

and w12 = w1 − w2. (Note that (i ↔ j) refers to a term that differs from the previous
term only by the exchange of the index i and j ; hence, for equation (35), (i ↔ j) ≡
ϑ[α](zj − zi + w12/2)ϑ1(zj − w1)ϑ1(zi − w2).) As far as translation of electrons around the
torus generators are concerned equation (34) has same transformation as equation (31) or as
the holomorphic part of equation (30).

The above considerations are not, however, sufficient for obtaining the complete two-
quasihole wavefunctions. Equations (34) and (35) satisfy constraints involving only the
electron coordinates zi . There are also important factors that depend only on w1 and w2. To
obtain the complete dependence on the quasihole coordinates as well, we need to calculate the
holomorphic conformal blocks of the correlators for critical Ising model.

The starting point is to observe from Moore and Read’s original derivation how the Pfaffian
part of the Moore–Read state wavefunction with two quasiholes is obtained when placed on
the plane [4]:

Pf

(
(zi − w1)(zj − w2) + (i ↔ j)

zi − zj

)
= 〈

ψ(z1) · · · ψ(
zNe

)
σ(w1)σ (w2)

〉
×w

1/8
12

∏
i

[(zi − w1)(zi − w2)]
1/2, (36)

where ψ is the Majorana fermion and σ is the spin field. One can immediately see that the
Pfaffian part of the wavefunction on a torus would be equal to〈
ψ(z1) · · · ψ(

zNe

)
σ(w1)σ (w2)

〉
α
[ϑ1(w12)]

1/8
∏

i

[ϑ1(zi − w1)ϑ1(zi − w2)]
1/2. (37)

Here α = (a, b)T denotes the boundary conditions, equation (26), of the ψ field on the torus,
just as in the case of equation (27).

The following Ising model correlators have been obtained in the even-spin structures on
the torus by Di Francesco et al [15, 16]:
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〈ψ(zi)ψ(zj )σ (w1)σ (w2)〉α
〈σ(w1)σ (w2)〉α = ϑ ′

1(0)

2ϑ1(zi − zj )

×
[

ϑ[α](zi − zj + w12/2)

ϑ[α](w12/2)

(
ϑ1(zi − w1)ϑ1(zj − w2)

ϑ1(zi − w2)ϑ1(zj − w1)

)1/2

+ (i ↔ j)

]
,

〈σ(w1)σ (w2)〉α =
(

ϑ[α](w12/2)

ϑ[α](0)

)1/2 (
ϑ ′

1(0)

ϑ1(w12)

)1/8

. (38)

(To be precise, these are the chiral holomorphic parts extracted from the non-chiral Ising field
correlators obtained by Di Francesco et al.) From the antisymmetry of the ψ field under
exchange, and from the conditions

lim
z1→z2

(z1 − z2)
〈
ψ(z1)ψ(z2)ψ(z3) · · · ψ(

zNe

)
σ(w1)σ (w2)

〉
α

= 〈
ψ(z3) · · · ψ(

zNe

)
σ(w1)σ (w2)

〉
α
,

lim
zi→zj

(zi − zj )
〈ψ(zi)ψ(zj )σ (w1)σ (w2)〉α

〈σ(w1)σ (w2)〉α = 1, (39)

we can obtain the Ne-point ψ field correlator (Ne even) as〈
ψ(z1) · · · ψ(

zNe

)
σ(w1)σ (w2)

〉
α

= 〈σ(w1)σ (w2)〉α Pf

(〈ψ(zi)ψ(zj )σ (w1)σ (w2)〉α
〈σ(w1)σ (w2)〉α

)
. (40)

Equations (37), (38) and (40) tell us that the wavefunctions of equation (34) need to be modified
in the following way if they are to have correct dependence on quasihole coordinates:

f (α,m)
(
z1, . . . , zNe

;w1, w2
) = F (α,m)

cm

(∑
i

zi +
w1 + w2

4

)
[ϑ[α](w12/2)]1/2 Pf

(
M̃α

ij

)
×

∏
i<j

[ϑ1(zi − zj )]
2, (41)

with

M̃α
ij = ϑ[α](zi − zj + w12/2)ϑ1(zi − w1)ϑ1(zj − w2) + (i ↔ j)

2ϑ1(zi − zj )ϑ[α](w12/2)
. (42)

Note that while equation (38) is not single-valued in coordinates of the ψ fields—taking a ψ

around a σ results in a minus sign—the wavefunction equation (41) is single-valued in the
electron coordinate. This is because the [ϑ1(w12)]1/8 ∏

i[ϑ1(zi − w1)ϑ1(zi − w2)]1/2 factor
(in addition to the Laughlin–Jastrow factor) makes everything analytic in equation (41), same
for [ϑ[α](w12/2)]1/2. Thus, the wavefunction is single-valued in electron coordinate and has
no singularity. Note that constants ϑ[α](0) and ϑ ′

1(0) have been ignored in equation (41).
(This means in the limit w1 → w2 equation (41) will differ from equation (31) by some
multiplicative constant.)

We now ask what happens when one of the quasiholes is translated around the generators.
In contrast to equation (33) where only m changed, this operation will result in a change in α.
To see what happens to the wavefunctions, we require the following standard theta function
identities [12, 15]:

ϑ2(z ± 1/2) = ∓ϑ1(z),

ϑ2(z ± τ/2) = exp[−iπ(±z + τ/4)]ϑ3(z),

ϑ3(z ± 1/2) = ϑ4(z), (43)
ϑ3(z ± τ/2) = exp[−iπ(±z + τ/4)]ϑ2(z),

ϑ4(z ± 1/2) = ϑ3(z),

ϑ4(z ± τ/2) = ± i exp[−iπ(±z + τ/4)]ϑ1(z),
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together with the centre-of-mass wavefunction formulae,

F (a=2,m)
cm (z ± 1/4) = exp(−i(1/2 ∓ 1/2)π(m + Ns/2 − 1))F̃ (m)

cm (z),

F (a=2,m)
cm (z ± τ/4) = e± iπ(Ns−1)/4 exp[−iπ(±z + τ/8)]F (a=3,m+1/2∓1/2)

cm (z),

F (a=3,m)
cm (z ± 1/4) = exp(−i(1/2 ∓ 1/2)π(m + Ns/2 − 1/2))F (a=4,m)

cm (z),
(44)

F (a=3,m)
cm (z ± τ/4) = e± iπ(Ns−1)/4 exp[−iπ(±z + τ/8)]F (a=2,m+1/2±1/2)

cm (z),

F (a=4,m)
cm (z ± 1/4) = exp(i(1/2 ± 1/2)π(m + Ns/2 − 1/2))F (a=3,m)

cm (z),

F (a=4,m)
cm (z ± τ/4) = e± iπ(Ns−2)/4 exp[−iπ(±z + τ/8)]F̃ (m+1/2±1/2)

cm (z).

In these centre-of-mass wavefunction formulae, the notation of equation (9) is used; that is,
a = 2 stands for α = (1/2, 0)T , a = 3 for α = (0, 0)T and a = 4 for α = (0, 1/2)T .

Note that the transformations of equation (43) are covariant with those of equation (44).
Consider the results not involving ϑ1 or F̃ (m)

cm :

w1 → w1 ± τ : f (a=2,m)
(
z1, . . . , zNe

;w1, w2
) → exp[−iπNs(±w1/2 + τ/4)]

× f (a=3,m+1/2∓1/2)
(
z1, . . . , zNe

;w1, w2
)
,

w1 → w1 ± 1 : f (a=3,m)
(
z1, . . . , zNe

;w1, w2
) → (−1)Ne/2 eiπm(1/2∓1/2)

× f (a=4,m)
(
z1, . . . , zNe

;w1, w2
)
,

(45)
w1 → w1 ± τ : f (a=3,m)

(
z1, . . . , zNe

;w1, w2
) → exp[−iπNs(±w1/2 + τ/4)]

× f (a=2,m+1/2±1/2)
(
z1, . . . , zNe

;w1, w2
)
,

w1 → w1 ± 1 : f (a=4,m)
(
z1, . . . , zNe

;w1, w2
) → (−1)Ne/2 eiπm(1/2±1/2)

× f (a=3,m)
(
z1, . . . , zNe

;w1, w2
)
.

In Moore and Read’s original wavefunction formulation [4] the Gaussian factor comes entirely
determined from the charge sector. Since the charge of a quasihole considered here is e/4, an
analogy with equation (16) shows that the total wavefunction should be

�(α,m)
(
r1, . . . , rNe

; R1, R2
) = exp

(
−
∑

i

y2
i

/
2l2

)

× exp
[−(

η2
1 + η2

2

)/
8l2

]
f (α,m)

(
z1, . . . , zNe

;w1, w2
)
. (46)

Equations (45) and (46) give the following transformation rules for the total wavefunctions:

R1 → R1 ± Ly ŷ : �(a=2,m)
(
r1, . . . , rNe

; R1, R2
) → exp(∓ iLyξ1/4l2)

×�(a=3,m+1/2∓1/2)
(
r1, . . . , rNe

; R1, R2
)
,

R1 → R1 ± Lx x̂ : �(a=3,m)
(
r1, . . . , rNe

; R1, R2
) → (−1)Ne/2 eiπm(1/2∓1/2)

×�(a=4,m)
(
r1, . . . , rNe

; R1, R2
)
,

(47)
R1 → R1 ± Ly ŷ : �(a=3,m)

(
r1, . . . , rNe

; R1, R2
) → exp(∓ iLyξ1/4l2)

×�(a=2,m+1/2±1/2)
(
r1, . . . , rNe

; R1, R2
)
,

R1 → R1 ± Lx x̂ : �(a=4,m)
(
r1, . . . , rNe

; R1, R2
) = (−1)Ne/2 eiπm(1/2±1/2)

×�(a=3,m)
(
r1, . . . , rNe

; R1, R2
)
.

We see that, unlike for the Laughlin states, these states are not eigenstates with respect to
wj → wj ± 1 transformations. However, the feature that this transformation does not change
m persists. For the translations wj → wj ± τ , there is a phase factor due to the gauge
transformation A → A − BLy x̂. Comparing the gauge transformation phase factors of
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equation (21) to that of equation (47) confirms that the quasiholes in equation (47) have charge
e/4.

Equation (45) left the following two cases unmentioned:

w1 → w1 ± 1 : f (a=2,m)
(
z1, . . . , zNe

;w1, w2
) → (−1)Ne/2 e−iπ(1/4∓1/4) eiπ(m−1)(1/2∓1/2)

× f̃ (m)
(
z1, . . . , zNe

;w1, w2
)
,

(48)
w1 → w1 ± τ : f (a=4,m)

(
z1, . . . , zNe

;w1, w2
) → e∓ iπ/4 exp[−iπNs(±w1/2 + τ/4)]

× f̃ (m+1/2±1/2)
(
z1, . . . , zNe

;w1, w2
)
,

where

f̃ (m)
(
z1, . . . , zNe

;w1, w2
) = F̃ (m)

cm

(∑
i

zi +
w1 + w2

4

)
[ϑ1(w12/2)]1/2 Pf

(−M̃
α=(1/2,1/2)

ij

)
×

∏
i<j

[ϑ1(zi − zj )]
2. (49)

The tilde mark is placed above f in equation (49) because, in some sense, it does not qualify as
a Moore–Read state wavefunction. When the two quasiholes are merged in equation (49), the
wavefunction simply vanishes; one does not get one of the wavefunctions of equation (31). This
does not mean that equation (49) necessarily gives higher energy than equation (41). However,
note that equation (31) differs from the ground states only by one quantum flux; equation (49)
does not have a corresponding ground state in this sense, hence its disqualification. One can
further regard having two e/4 quasiholes as differing from having a quasihole–quasiparticle
pair merely by one quantum flux. This leads to the conclusion that if one creates a quasihole–
quasiparticle pair out of one of a = 2 (or a = 4) ground states, translate the quasihole around the
generator in the x− (or y-) direction, and annihilate the pair, one does not return to a ground
state; this means that the monodromy process can actually excite the system.

To find out what kind of excitation do we have here, we need to examine the vanishing
of equation (49) as two quasiholes are brought together. An examination into equation (42)
shows that the vanishing is not due to the Pfaffian part of equation (49). Indeed,

lim
w2→w1

M̃
α=(1/2,1/2)

ij = −ϑ1(zi − w1)ϑ1(zj − w1)

ϑ ′
1(0)

×
[
ϑ ′

1(zi − zj )

ϑ1(zi − zj )
−
(

ϑ ′
1(zi − w1)

ϑ1(zi − w1)
− ϑ ′

1(zj − w1)

ϑ1(zj − w1)

)]
. (50)

The vanishing of equation (49) is therefore solely due to [ϑ1(w12/2)]1/2. This term originates
from the correlator of two quasiholes in the α = (1/2, 1/2)T sector. This is the sector with
the periodic boundary conditions around both generators for ψ fields:

〈σ(w1)σ (w2)〉α=(1/2,1/2)[ϑ1(w12)]
1/8 ∝ [ϑ1(w12/2)]1/2. (51)

The spin structure is therefore correlated with the internal state (fusion channel) of the two
quasiholes. Since for w → 0

〈σ(w)σ(0)〉α=(1/2,1/2) ∼ w3/8, (52)

whereas for α = (1/2, 0)T , (0, 0)T , and (0, 1/2)T

〈σ(w)σ(0)〉α ∼ w−1/8, (53)

the chiral Ising model operator product expansion

σ(w)σ(0) ∼ I

w1/8
+ const w3/8ψ(0) (54)
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tells us that for α = (1/2, 1/2)T two σ ’s fuse into ψ , whereas for α = (1/2, 0)T , (0, 0)T ,
and (0, 1/2)T they fuse into I. We see that our wavefunction approach makes manifest the
observation of Oshikawa et al that, after the translation of a quasihole around a generator, the
system may refuse to go back into a ground state because of a change in the σ × σ fusion
channel [10]. This change was explained by Oshikawa et al by using the branch cut argument
of Ivanov [17] and Stern et al [18]

From the preceding arguments, one can explain this change of the fusion channel in terms
of the physical fusion in the manner discussed by Stone and Chung for the two-dimensional
p + ip superconductor [19]. In the ground states, two σ ’s fused into I and the total fermion
number on torus was even, enabling all fermions to be paired up. However, once the translation
of one quasihole rolls the system over to the α = (1/2, 1/2)T sector, σ ’s fused into a ψ , which,
due to the conservation of total fermion number, is possible only if there is depairing of one of
fermion pairs. Therefore, with this change of fusion channel, the system is left in an excited
state.

This superconductor analogy also indicates that the parity of electron number in the
ground state of the α = (1/2, 1/2)T sector should be different from that of other sector. In this
picture, after the roll over to the α = (1/2, 1/2)T sector, there is a Bogoliubov quasiparticle
excitation in the system. Now if superconductor with one Bogoliubov quasiparticle excitation
has N electrons, this is equivalent to having a superposition of one hole excitation on a ground
state with N + 1 electrons and one particle excitation on a ground state with N − 1 electrons.
Thus, the change of fusion channel has to be accompanied by the change in the parity of the
electron number in the ground state.

As previously commented, in discussing topological features, creating a quasiparticle–
quasihole pair is equivalent to splitting a charge e/2 quasihole into two e/4 quasiholes; the
only difference between two cases is that there is one more flux quantum for the latter case.
In their paper, Oshikawa et al defined Tx,y to be a process in which a quasiparticle–quasihole
pair is created and then the quasiparticle is dragged around the generator of the torus in the
x- (or y-) direction to wrap around the system before it is pair-annihilated with the quasihole
[10]. So one can make following correspondences between the analytic continuation of theta
functions considered in this paper and the processes defined by Oshikawa et al:

w1 → w1 + 1 ⇔ Tx, w1 → w1 + τ ⇔ Ty. (55)

It will be shown in the appendices that the ground states labelled by a and m in this paper are
eigenstates of T −2

x and T 4
y . Labelling eigenvalues for these operators divided by the gauge

transformation factor as fy and f ′
x respectively, we obtain the following correspondences

between the wavefunctions of this paper and the state vectors of Oshikawa et al:

�(a=2,m=0) ↔ |fy = i, f ′
x = 1〉 �(a=2,m=1) ↔ |fy = −i, f ′

x = 1〉,
�(a=3,m=0) ↔ |fy = 1, f ′

x = 1〉 �(a=3,m=1) ↔ |fy = −1, f ′
x = 1〉,

(−1)Ne/2�(a=4,m=0) ↔ |fy = 1, f ′
x = −1〉 (−1)Ne/2�(a=4,m=1) ↔ |fy = −1, f ′

x = −1〉.
(56)

Adapting the continuation formulae of equation (48) to the correspondence made in
equation (56), we find the following topological actions:

|fy = 1, f ′
x = 1〉 Tx |fy = 1, f ′

x = 1〉 = |fy = 1, f ′
x = −1〉,

Ty |fy = 1, f ′
x = 1〉 = |fy = −i, f ′

x = 1〉 TxTy |fy = 1, f ′
x = 1〉 = 0,

T 2
y |fy = 1, f ′

x = 1〉 = |fy = −1, f ′
x = 1〉 TxT 2

y |fy = 1, f ′
x = 1〉 = |fy = −1, f ′

x = −1〉,
T 3

y |fy = 1, f ′
x = 1〉 = |fy = i, f ′

x = 1〉 TxT 3
y |fy = 1, f ′

x = 1〉 = 0. (57)
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There are exactly the transformation formulae of Oshikawa et al [10]. Note, however, that
for our formula, there is a provision that after all the quasihole translation has been carried
out, the two quasiholes are to be merged . As in equation (21), we have dropped the gauge
transformation phase factor.

Oshikawa et al considered bases diagonalized with respect to either Tx or Ty [10]. These
two bases are related by the modular S-matrix. In either basis, it can be shown that the
transformation formulae of this subsection follow the Verlinde formula on diagonalization of
fusion numbers by the S-matrix [15, 20].

3.2. Odd-spin-structure sector

We now need to consider the odd-spin structure in detail. On a torus, this is the case where the
chiral Majorana fermion has periodic boundary conditions around both the generators. The
action of a chiral Majorana fermion field ψ is

S = 1

2π

∫
d2z ψ∂̄ψ. (58)

In performing the path integral, it is necessary to expand ψ in terms of the normalized c-number
eigenmodes ψnm(z, z̄) of ∂̄ . These must be doubly periodic, and so are

ψnm(z, z̄) = 1√
Im τ

exp
π

Im τ
[n(τ z̄ − τ̄ z) + m(z − z̄)]. (59)

The resulting mode expansion is

ψ(z, z̄) =
∑

n,m∈Z

anmψmn(z, z̄) = a00 +
∑

n,m�0

′
[anmψnm(z, z̄) + a−n,−mψ−n,−m(z, z̄)], (60)

where an’s are Grassman variables with a−n,−m ≡ a∗
nm and

∑′
nm is a summation over non-

negative integers that excludes the n = m = 0 term. It should be noted that, since ψ is
holomorphic only as a result of the equation of motion, one cannot take it to be holomorphic
in performing the path integral.

When the mode expansion equation (60) is inserted into the action of equation (58), we
obtain

S = 1

2π

∑
n,m�0

′
(nτ − m)a−n,−manm. (61)

The Grassmann variable a00 does not appear in this action. However, a00 does appear in the
integration measure

d[ψ] =
∏

n,m∈Z

danm. (62)

This leads to the odd-spin-sector partition function vanishing [15, 16, 21]:

∫
da00


 ∏

n,m�0

′
danm da−n,−m


 exp(−S) = 0. (63)

As in
∑′

nm of equation (60),
∏′

nm is a product of terms with non-negative integers n,m that
excludes the n = m = 0 term. Now

∫
a da = 1 and

∫
da = 0 for any Grassmann variable

a, and so the integration
∫

F(a)
∏

n,m danm yields zero unless each anm appears exactly once
in the integrand F(a), and there is no a00 in the partition function integrand. For the same
reason, any correlator of an even number of ψ’s vanishes.
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Correlators with odd number of ψ’s can be nonzero. Consider the simplest case:

〈ψ(z)〉 ∝
∫

d[ψ]ψ(z) exp(−S) ∝
∫

a00 da00


 ∏

n,m�0

′
danm da−n,−m


 exp(−S)

=
∫ (∏

n,m

′
danm da−n,−m

)
exp(−S) �= 0. (64)

Thus 〈ψ(z)〉 is a nonzero constant [15, 16]. The next simplest case is the three-point correlators,
where three ψ fields take turns in occupying the zero mode:

〈ψ(z1)ψ(z2)ψ(z3)〉 ∝
∫

d[ψ]ψ(z1)ψ(z2)ψ(z3) exp(−S)

∝
∫ 

 ∏
n,m�0

′
danm da−n,−m


 ∑

i,j�0

′
aijψij (z1)

∑
k,l�0

′
aklψkl(z2) exp(−S)

+
∫ 

 ∏
n,m�0

′
danm da−n,−m


 ∑

i,j�0

′
aijψij (z2)

∑
k,l�0

′
aklψkl(z3) exp(−S)

+
∫ 

 ∏
n,m�0

′
danm da−n,−m


 ∑

i,j�0

′
aijψij (z3)

∑
k,l�0

′
aklψkl(z1) exp(−S)

= g++(r1 − r2) + g++(r2 − r3) + g++(r3 − r1), (65)

where [7, 8]

g++(r) = ϑ ′
1(z)

ϑ1(z)
+

2π iy

Ly

(66)

is a modified Green function satisfying

∂̄g++(r) = πδ(2)(r) − π

Im τ
. (67)

This Green function contains y = (z + z̄)/2 and is not holomorphic. z̄’s, however, cancel
in sum of three Green functions appearing in equation (65). The three-point correlator is,
therefore, holomorphic.

In the odd-spin structure, and for Ne odd, the general Ne-point chiral Majorana fermion
correlator is〈
ψ(z1) . . . ψ

(
zNe

)〉 ∝ �++
(
z1, . . . , zNe

)
= 1

2(Ne−1)/2[(Ne − 1)/2]!

∑
P∈SNe

sgn(P )

(Ne−1)/2∏
i=1

g++(rP(2i−1) − rP(2i)). (68)

Here P runs over all permutations of Ne objects. Again, at first sight, this equation looks
neither chiral nor holomorphic. However, Read and his coworkers [7, 8] asserted that the
cancellation in equation (65) generalizes to

�++
(
z1, . . . , zNe

) = 1

2(Ne−1)/2[(Ne − 1)/2]!

∑
P∈SNe

sgn(P )

(Ne−1)/2∏
i=1

ϑ ′
1(zP (2i−1) − zP(2i))

ϑ1(zP (2i−1) − zP(2i))
. (69)

This rather non-obvious cancellation of z̄’s will be proved in the appendices.
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Equation (68) was first constructed by Read and Green in their work on spinless p + ip
superconductor [8]. They have pointed out that the existence of the k = 0 mode, which is an
almost exact analogue of the zero mode discussed here, requires the number of electrons to be
odd, as long as it is energetically favourable to have this k = 0 mode occupied.

We emphasize again that these periodic and antiperiodic ‘boundary conditions’ for ψ(z)’s
are not the boundary conditions of the physical electrons. The physical boundary conditions
are those of equations (1) and (3). The boundary conditions for ψ(z)’s affect only the manner of
BCS pairing. The best way of regarding equation (68) is that this is the correct replacement for
the Pfaffian when the number of electrons is odd. The centre-of-mass wavefunctions ensure
that all Moore–Read states on a torus have the same physical boundary conditions under
translation of electrons around generators, regardless of whether the number of electrons
is even or odd. This means that F̃ (m)

cm of equation (28) is the centre-of-mass wavefunction
when the number of electrons on the torus is odd. The holomorphic part of the ground-state
wavefunction in this case is therefore

f
(m)
odd

(
z1, . . . , zNe

) = F̃ (m)
cm

(∑
i

zi

)
�++

(
z1, . . . , zNe

)∏
i<j

[ϑ1(zi − zj )]
2. (70)

Obtaining the wavefunctions with one charge e/2 quasihole with one quantum flux is now
straightforward. It is in essentially the same form as equation (31):

f
(m)
odd (z1, . . . , zNe

;w) = F̃ (m)
cm

(∑
i

zi +
w

2

)
�++

(
z1, . . . , zNe

)
×

∏
i

ϑ1(zi − w)
∏
i<j

[ϑ1(zi − zj )]
2. (71)

How one do we fractionalize the quasihole of equation (71) to obtain two charge e/4
quasiholes? The first formula of equation (39), being independent of the parity of number of
ψ’s, still holds. Also note if we define M̃odd

ij = −M̃
α=(1/2,1/2)

ij then

lim
zi→zj

(zi − zj )ϑ
′
1(0)M̃odd

ij

[ϑ1(zi − w1)ϑ1(zi − w2)ϑ1(zj − w1)ϑ1(zj − w2)]1/2
= 1. (72)

Therefore, in the odd-spin structure for Ne odd, the chiral Ising field correlator of
equation (40) becomes

〈
ψ(z1) · · · ψ(

zNe

)
σ(w1)σ (w2)

〉
α=(1/2,1/2)

=
Ne∏
i=1

[ϑ1(zi − w1)ϑ1(zi − w2)]
−1/2

×
∑

P∈SNe

sgn(P )
[
ϑ1
(
zP(Ne) − w1

)
ϑ1
(
zP(Ne) − w2

)]1/2

× 〈
ψ
(
zP(Ne)

)
σ(w1)σ (w2)

〉
α=(1/2,1/2)

×
(Ne−1)/2∏

j=1

[
ϑ ′

1(0)M̃odd
P(2j−1),P (2j)

]
. (73)

Note that one now needs to calculate 〈ψσσ 〉α=(1/2,1/2) rather than 〈σσ 〉α=(1/2,1/2). This leads
to the conclusion that with two e/4 quasiholes at w1 and w2, equation (71) should be modified
into
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�̃++
(
z1, . . . , zNe

;w1, w2
) = const

∑
P∈SNe

sgn(P )[ϑ1(w1 − w2)]
1/8

× [
ϑ1
(
zP(Ne) − w1

)]1/2[
ϑ1
(
zP(Ne) − w2

)]1/2

× 〈
ψ
(
zP(Ne)

)
σ(w1)σ (w2)

〉
α=(1/2,1/2)

(Ne−1)/2∏
i=1

[
M̃odd

P(2i−1),P (2i)

]
. (74)

We compute the necessary Ising correlator in the appendices. We find that

〈ψ(z)σ (w1)σ (w2)〉α=(1/2,1/2) ∝
[

1

ϑ1(w12)

]1/8

×
[
ϑ ′

1(w12/2) +
1

2
ϑ1(w12/2)

(
ϑ ′

1(z − w1)

ϑ1(z − w1)
− ϑ ′

1(z − w2)

ϑ1(z − w2)

)]1/2

. (75)

Consequently, ignoring a multiplicative constant, we have

�̃++
(
z1, . . . , zNe

;w1, w2
) =

∑
P∈SNe

sgn(P )
[
h
(
zP(Ne);w1, w2

)]1/2
(Ne−1)/2∏

i=1

[
M̃odd

P(2i−1),P (2i)

]
,

(76)

where

h(z;w1, w2) = ϑ ′
1(w12/2)ϑ1(z − w1)ϑ1(z − w2)

+ 1
2ϑ1(w12/2)(ϑ ′

1(z − w1)ϑ1(z − w2) − ϑ ′
1(z − w2)ϑ1(z − w1)). (77)

The holomorphic part of the wavefunction with two charge e/4 quasiholes is

f
(m)
odd

(
z1, . . . , zNe

;w1, w2
)

= F̃ (m)
cm

(∑
i

zi +
w1 + w2

4

)
�̃++

(
z1, . . . , zNe

;w1, w2
)∏

i<j

[ϑ1(zi − zj )]
2

= F̃ (m)
cm

(∑
i

zi +
w1 + w2

4

)∏
i<j

[ϑ1(zi − zj )]
2

×
∑

P∈SNe

sgn(P )
[
h
(
zP(Ne);w1, w2

)]1/2
(Ne−1)/2∏

k=1

[
M̃odd

P(2k−1),P (2k)

]
. (78)

It is not obvious that this wavefunction equation (78) is analytic in electron coordinates.
We need to show that [h(z;w1, w2)]1/2 is an analytic function of z. The proof of the analyticity
of [h(z;w1, w2)]1/2 can be presented in two steps. First, note that from

h(z + 1;w1, w2) = h(z;w1, w2) (79)
h(z + τ ;w1, w2) = exp[−2π i(2z − w1 − w2 + τ)]h(z;w1, w2)

z of h(z;w1, w2) should have two zeros in the first principal region. Second, note that both
h(z;w1, w2) and ∂zh(z;w1, w2) vanish at z = (w1 + w2)/2. This shows that there is actually
a double zero at z = (w1 + w2)/2 and this is enough to ensure that [h(z;w1, w2)]1/2 is indeed
analytic in z.

We should also verify that the odd-spin-sector wavefunction with two e/4 quasiholes
goes smoothly into the corresponding wavefunction with one e/2 quasihole (up to a overall
multiplicative constant) as the e/4 quasiholes merge. In other words, in the limit that
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w1, w2 → w, does �̃++
(
z1, . . . , zNe

;w1, w2
)

of equation (76) become proportional to
g++

(
z1, . . . , zNe

)∏
i ϑ1(zi − w)? From equation (50),

lim
w1,w2→w

�̃++
(
z1, . . . , zNe

;w1, w2
) = [ϑ ′

1(0)]1/2
∏

i

ϑ1(zi − w)
∑

P∈SNe

sgn(P )

(Ne−1)/2∏
i=1

1

ϑ ′
1(0)

×
[
ϑ ′

1(zP (2i−1) − zP(2i))

ϑ1(zP (2i−1) − zP(2i))
−
(

ϑ ′
1(zP (2i−1) − w)

ϑ1(zP (2i−1) − w)
− ϑ ′

1(zP (2i) − w)

ϑ1(zP (2i) − w)

)]

= const
∏

i

ϑ1(zi − w)
∑

P∈SNe

sgn(P )

(Ne−1)/2∏
i=1

ϑ ′
1(zP (2i−1) − zP(2i))

ϑ1(zP (2i−1) − zP(2i))

= const�++
(
z1, . . . , zNe

)∏
i

ϑ1(zi − w). (80)

The cancellation of the w-dependent terms other than
∏

i ϑ1(zi − w) occurs for exactly same
reason as the one in equation (69). This cancellation will be proved in the appendices.

From

h(z;w1 ± 1, w2) = ±ϑ ′
2(w12/2)ϑ1(z − w1)ϑ1(z − w2)

± 1
2ϑ2(w12/2)(ϑ ′

1(z − w1)ϑ1(z − w2) − ϑ ′
1(z − w2)ϑ1(z − w1)),

(81)
h(z;w1 ± τ,w2) = ± ie−iπτ/4 e∓ iπw12/2 e−iπτ e±2π iz[ϑ ′

4(w12/2)ϑ1(z − w1)ϑ1(z − w2)

+ 1
2ϑ4(w12/2)(ϑ ′

1(z − w1)ϑ1(z − w2) − ϑ ′
1(z − w2)ϑ1(z − w1))],

it is clear that after one quasihole is translated around a generator the wavefunction vanishes
when two quasiholes are brought together.

As in the even-spin-structure case, this vanishing can be attributed to the change in the
fusion channel of two σ ’s. This is so since

lim
w1→w2

〈ψ(z)σ (w1)σ (w2)〉α=(1/2,1/2) ∼ w
−1/8
12 , (82)

but after the translation w1 → w1 ± 1 or w1 → w1 ± τ , equation (81) tells us that the same
correlator vanishes as w

3/8
12 when w1 → w2. From the chiral Ising operator product expansion,

equation (54), one can see two σ ’s fuse to I in 〈ψσσ 〉α=(1/2,1/2), but after the w1 → w1 ± 1
or w1 → w1 ± τ translation they fuse to ψ . The argument made in the last subsection that
this change in the fusion channel is accompanied by the change in the parity of the number of
the electrons in the ground state remains valid. Since the number of electrons in the system
does not change, a quasiparticle excitation must have been created. Note that the different
monodromy results of the odd-spin structure arise from the fact that here 〈ψσσ 〉 plays the role
of 〈σσ 〉 in the even-spin structures. We see that the different monodromy outcomes originate
from the different parities of the electron number.

From the monodromy outcomes we have obtained, the ground states of the odd-spin
structure are eigenstates of both Tx and Ty . However, in the even-spin structures, no ground
state is simultaneously an eigenstate of both Tx and Ty . The difference comes from the fact
that, in the language of the critical Ising model, the total topological charge of the system is
ψ in the odd-spin structure whereas it is I in the even-spin structures. That means that the
modular S-matrix of the system for the odd-spin structure differs from that of the even-spin
structures—Sψ for the former and SI for the latter [22, 23].

This discussion on total topological charge indicates that the odd-spin-structure sector
exists only because electrons that make up a quantum Hall system are fermions. On the other
hand, a system consisting of bosons, as in the string net of Levin and Wen [24], one cannot
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have a ground state with total topological charge of ψ . In such a system, one would still have
‘forbidden transition’ due to change in the fusion channel, but this change is not tied with the
change in the parity of number of particles in the ground state in the manner discussed here.
The change in the fusion channel can be attributed to the change in the parity of number of
particles in the ground state only when the particles are fermions and the ground state has BCS
pairing.

4. Conclusion and discussion

In this paper, we constructed the two-quasihole wavefunctions for the Moore–Read quantum
Hall state on a torus for both even and odd-spin structures. Conformal field theory
calculations enable us to obtain the complete dependence of these wavefunctions on
quasihole coordinates. We showed that the number of electrons in a ground state must
be odd in the odd-spin structure and even in the even-spin structures. By noting that
the boundary conditions of each electron remain that of equation (1) for all topologically
degenerate ground states, we obtained the explicit expressions for the centre-of-mass
wavefunctions in all cases. Analytic continuation allowed us to obtain the monodromy
matrix describing the effect on the space degenerate ground states of taking quasiholes
around the torus generators. The effects are in agreement with those obtained by Oshikawa
et al. In this process, we demonstrated that otherwise anticipated transitions are forbidden
because they involve a change in the fusion channel of the quasiholes. This reflects a change
in the parity of the number of electrons that can reside in the ground state. Since the
number of electrons is conserved, the operations that might have resulted in these forbidden
operations take us out of the space of degenerate ground states and into the space of excited
states.

Several extensions of our analysis are possible. Theta functions can be generalized
to higher genus Riemann surface [25], and these functions will naturally be ingredients of
wavefunctions in such topology. Such wavefunctions for Laughlin states had been studied
[26]. With these wavefunctions are found for the Moore–Read state, it should be possible
to extend our calculations to the higher genus Riemann surface considered by Oshikawa
et al [10]. It would also be valuable to extend this analysis to consider the next simplest non-
Abelian quantum Hall states, the Read–Rezayi parafermion states. The number of degenerate
ground states has already been found [27]. The challenge is to work out the wavefunction on
the compact Riemann surface using the conformal field theory analysis, thus extending the
recent wavefunction construction by Ardonne and Schoutens on the plane [28].
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Appendix A. Translation eigenvalues of wavefunctions

Following equation (55), T −2
x and T 4

y can be regarded as implementing R1 → R1 − Lx x̂
twice and R1 → R1 + Ly ŷ four times, respectively, on two-quasihole wavefunctions
�(a,m)

(
r1, . . . , rNe

; R1, R2
)
. For a = 3, repeated application of equation (45) leads to

T 4
y : �(a=2,m)

(
r1, . . . , rNe

; R1, R2
) → exp(−iLyξ1/l2)�(a=2,m)

(
r1, . . . , rNe

; R1, R2
)
,

T −2
x : �(a=3,m)

(
r1, . . . , rNe

; R1, R2
) → eiπm�(a=3,m)

(
r1, . . . , rNe

; R1, R2
)
,

(A.1)
T 4

y : �(a=3,m)
(
r1, . . . , rNe

; R1, R2
) → exp(−iLyξ1/l2)�(a=3,m)

(
r1, . . . , rNe

; R1, R2
)
,

T −2
x : �(a=4,m)

(
r1, . . . , rNe

; R1, R2
) → eiπm�(a=4,m)

(
r1, . . . , rNe

; R1, R2
)
.

To apply these operations on a = 2 and a = 4 states, one also needs to consider the
transformation of f̃ (m)

(
z1, . . . , zNe

;w1, w2
)

of equation (49), even if this does not qualify as
a Moore–Read state wavefunction. From the standard theta function identities

ϑ1(z − 1/2) = −ϑ2(z), (A.2)
ϑ1(z + τ/2) = i exp[−iπ(z + τ/4)]ϑ4(z),

and the centre-of-mass wavefunction transformation

F̃ (m)(z − 1/4) = F (a=2,m)
cm (z),

(A.3)
F̃ (m)(z + τ/4) = eiπ(Ns−2)/4 exp[−iπ(z + τ/8)]F (a=4,m)

cm (z),

one obtains

w1 → w1 − 1 : f̃ (m)
(
z1, . . . , zNe

;w1, w2
) → (−1)Ne/2f (a=2,m)

(
z1, . . . , zNe

;w1, w2
)
,

w1 → w1 + τ : f̃ (m)
(
z1, . . . , zNe

;w1, w2
) → e−iπ/4 exp[−iπNs(w1/2 + τ/4)] (A.4)

× f (a=4,m)
(
z1, . . . , zNe

;w1, w2
)
.

Repeated application of equations (45) and (A.4) leads to

T −2
x : �(a=2,m)

(
r1, . . . , rNe

; R1, R2
) → −i eiπ(m−1)�(a=2,m)

(
r1, . . . , rNe

; R1, R2
)
,

T 4
y : �(a=4,m)

(
r1, . . . , rNe

; R1, R2
) → − exp(−iLyξ1/l2)�(a=4,m)

(
r1, . . . , rNe

; R1, R2
)
.

(A.5)

Appendix B. Proof for cancellation in summation

Consider a function G(r, r′) odd under exchange of r and r′. Suppose this function can be
expressed as a sum of two function g1(r, r′) and g2(r, r′); g2(r, r′) has a further property
that g2(r1, r2) + g2(r2, r3) + g2(r3, r1) = 0. Certain functions in section 3, such as g++(r)
in equation (68) and M̃odd

ij in the limit w1, w2 → w as in equation (80) (when regarded as a
function of two electron coordinates), are of this form. In order that the assertions made in
equations (68) and (80) hold, it is necessary to show that for N odd

∑
P∈SN

sgn(P )

(N−1)/2∏
i=1

G(rP(2i−1), rP(2)) =
∑
P∈SN

sgn(P )

(N−1)/2∏
i=1

g1(rP(2i−1), rP(2i)). (B.1)

One can easily see that it should be so for N = 3 from G(r1, r2)+G(r2, r3)+G(r3, r1) =
g1(r1, r2) + g1(r2, r3) + g1(r3, r1), due to the property of g2 mentioned above. Suppose it
holds for N = 2k + 1 where k is some positive integer. If it can be shown from this assumption
that equation (B.1) holds for N = 2k + 3, then we have a proof by induction.
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To apply induction, a new permutation P ′ ∈ S2k+1 needs be introduced:

∑
P∈S2k+3

sgn(P )

k+1∏
i=1

G(rP(2i−1), rP(2i)) = 2
∑
m<n

(−1)m−n−1G(rm, rn)

×
∑

P ′∈S2k+1

sgn(P ′)
k∏

i=1

G(rP ′(2i−1), rP ′(2i)), (B.2)

where m, n are integers between 1 and 2k + 3. This P ′ is a permutation of integers between 1
and 2k + 3 except m and n. Since the assumption had been made that equation (B.1) holds for
N = 2k + 1, equation (B.2) means∑
P∈S2k+3

sgn(P )

k+1∏
i=1

G(rP(2i−1), rP(2i)) = 2
∑
m<n

(−1)m−n−1G(rm, rn)

×
∑

P ′∈S2k+1

sgn(P ′)
k∏

i=1

g1(rP ′(2i−1), rP ′(2i)). (B.3)

Comparing equation (B.2) and equation (B.3) shows that equation (B.3) means we can replace
all but one G into g1. However, this leads to the conclusion that the last remaining G can also
be replaced by g1:

∑
P∈S2k+3

sgn(P )

k+1∏
i=1

G(rP(2i−1), rP(2i))

=
∑

P∈S2k+3

sgn(P )G(rP(2k+1), rP(2k+2))

k+1∏
i=2

g1(rP(2i−1), rP(2i))

= 1

3

∑
P∈S2k+3

sgn(P )[G(rP(2k+1), rP(2k+2)) + G(rP(2k+2), rP(2k+3))

+ G(rP(2k+3), rP(2k+1))]
k+1∏
i=2

g1(rP(2i−1), rP(2i))

= 1

3

∑
P∈S2k+3

sgn(P )[g1(rP(2k+1), rP(2k+2)) + g1(rP(2k+2), rP(2k+3))

+ g1(rP(2k+3), rP(2k+1))]
k+1∏
i=2

g1(rP(2i−1), rP(2i))

=
∑

P∈S2k+3

sgn(P )

k+1∏
i=1

g1(rP(2i−1), rP(2i)). (B.4)

Appendix C. Critical Ising correlators on torus

To calculate

〈ψ(z)σ (w1)σ (w2)〉α=(1/2,1/2), (C.1)

first note the connection between the correlator in the chiral Ising theory and the full Ising
theory:

|〈ψ(z)σ (w1)σ (w2)〉|2 = 〈ε(z, z̄)σ (w1, w̄1)σ (w2, w̄2)〉. (C.2)
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So 〈ψσσ 〉 can be computed by taking the holomorphic part of 〈εσσ 〉. By the Ising model
bosonization formula [15, 30]

〈ε(z, z̄)σ (w1, w̄1)σ (w2, w̄2)〉2 = −2

〈
∂φ(z)∂̄φ(z̄) cos

φ(w1, w̄1)

2
cos

φ(w2, w̄2)

2

〉

= −1

2
[〈∂φ(z)∂̄φ(z̄) exp(iφ(w1, w̄1)/2) exp(−iφ(w2, w̄2)/2)〉

+ 〈∂φ(z)∂̄φ(z̄) exp(−iφ(w1, w̄1)/2) exp(iφ(w2, w̄2)/2)〉], (C.3)

where φ(z, z̄) is a free boson field. It should be emphasized that there is an intricacy hidden
behind equation (C.3). Critical Ising fields on torus can be bosonized only into a compactified
free boson. A boson with compactification radius r = 1 should have boundary condition

φ(m,m′)(z + 1, z̄ + 1) = φm,m′
(z, z̄) + 2πm, φ(m,m′)(z + τ, z̄ + τ̄ ) = φm,m′

(z, z̄) + 2πm′,
(C.4)

where m,m′ are integers. This winding comes entirely from the zero mode, so one can express
the free boson field φ as a sum of this zero mode and ‘free part’ φ̂, that is, nonzero modes:

φ(m,m′)(z, z̄) = π

iτ2
[m(τ z̄ − τ̄ z) + m′(z − z̄)] + φ̂(z, z̄), (C.5)

where τ = τ1 + iτ2 with τ1, τ2 being real. (Note that in this appendix, the first principal
region is a parallelogram and not necessarily a square and nonzero τ1 is considered.) This
decomposition of the boson field leads to the following decomposition of the action [15, 21]:

S[φ] = (1/8π)

∫
(∂φ)(∂̄φ)

= S[φ0] + S[φ̂] − (1/4π)

∫
φ̂�φ0 = S[φ0] + S[φ̂], (C.6)

where φ0 refers to the zero mode terms of equation (C.5). This result is due to the vanishing
of the Laplacian of φ0. This also means that the boson partition function Zbos factorizes into
the zero mode part Z0 and the ‘free part’ Ẑ: Zbos = Z0Ẑ. Since in calculating Z0, all m,m′

need to be summed over, one obtains [15, 16, 21]

Z0 =
∑
m,m′

Z
(m,m′)
0 , (C.7)

where Z
(m,m′)
0 = exp[−(π |mτ − m′|2/2τ2)].

To compute a full boson correlator, one should calculate the correlator first for the winding
sector m,m′ and then sum over all possible winding numbers. However, this does not suffice
for the purpose here, which is to calculate 〈ψσσ 〉α=(1/2,1/2). The question is how to extract
out the portion of the correlator that corresponds to α = (1/2, 1/2) sector of the Ising model.

The answer can be obtained from converting expressing theta functions in terms of Z
(m,m′)
0

of equation (C.7). Following Di Francesco et al [16]ϑ

[
1
2
1
2

]
(z|τ)


2

=
∑
n,n̄

exp(iπ [τ(n + 1/2)2 − τ̄ (n̄ + 1/2)2]) e2π i[(n+1/2)(z+1/2)−(n̄+1/2)(z̄+1/2)]

=

 ∑

m∈2Z+1

∑
q∈2Z

+
∑
m∈2Z

∑
q∈2Z+1


 (−1)m

× exp(iπ [mqτ1 + (i/2)(m2 + q2)τ2]) eπ i[m(z+z̄)+q(z−z̄)], (C.8)
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where m = n − n̄ and q = n + n̄ + 1. Applying the Poisson resummation formula∑
n

exp(−πan2 + bn) = 1√
a

∑
k

exp
[
−π

a
(k + b/2π i)2

]
(C.9)

for the summation over q in equation (C.8) leads to

|ϑ1(z)|2 = −1√
2τ2

∑
m∈2Z+1

e−πm2τ2/2 eπ im(z+z̄)

(∑
m′

exp[−(π/2τ2)(m
′ − mτ1 − z + z̄)2]

)

+
eπ i(z−z̄+iτ2/2)

√
2τ2

∑
m∈2Z

e−πm2τ2/2 eπ im(z+z̄+τ1)

×
(∑

m′
exp[−(π/2τ2)(m

′ − mτ1 − z + z̄ − iτ2)
2]

)

= −exp[−π(z − z̄)2/2τ2]√
2τ2

∑
m,m′

(−1)(m+1)(m′+1)Z
(m,m′)
0 exp[iφ(m,m′)

0 (z, z̄)], (C.10)

where φ
(m,m′)
0 (z, z̄) = (π/iτ2)[m(τ z̄ − τ̄ z) + m′(z − z̄)] as in equation (C.5). (Note that the

definition of the Jacobi theta functions, equation (9) is also used.)
Equations (C.8) and (C.10) tell us that when summing over different winding numbers m

and m′, weighting different winding sector by the sign factor −(−1)(m+1)(m′+1) would result in
extracting out the α = (1/2, 1/2) sector of the Ising model. It is now possible to calculate the
boson correlators of equation (C.3), e.g.,

〈∂φ(z)∂̄φ(z̄) exp(iφ(w1, w̄1)/2) exp(−iφ(w2, w̄2)/2)〉α=(1/2,1/2)

= −1

Z0Ẑ

∫
Dφ̂ e−S[φ̂]

∑
m,m′

(−1)(m+1)(m′+1)Z
(m,m′)
0 ∂φ(m,m′)(z)∂̄φ(m,m′)(z̄)

× exp(iφ(m,m′)(w1, w̄1)/2) exp(−iφ(m,m′)(w2, w̄2)/2)

= −1

Z0

∑
m,m′

(−1)(m+1)(m′+1)Z
(m,m′)
0 exp

[
iφ(m,m′)

0 (w12/2, w̄12/2)
]

× [
∂φ

(m,m′)
0 (z)∂̄φ

(m,m′)
0 (z̄)〈exp(iφ̂(w1, w̄1)/2) exp(−iφ̂(w2, w̄2)/2)〉

+ ∂φ
(m,m′)
0 (z)〈∂̄ φ̂(z̄) exp(iφ̂(w1, w̄1)/2) exp(−iφ̂(w2, w̄2)/2)〉

+ ∂̄φ
(m,m′)
0 (z̄)〈∂φ̂(z) exp(iφ̂(w1, w̄1)/2) exp(−iφ̂(w2, w̄2)/2)〉

+ 〈∂φ̂(z)∂̄φ̂(z̄) exp(iφ̂(w1, w̄1)/2) exp(−iφ̂(w2, w̄2)/2)〉]. (C.11)

The summation over m and m′ can be eliminated by inserting the result of equation (C.10),
together with some necessary differentiations, into equation (C.11):

〈∂φ(z)∂̄φ(z̄) exp(iφ(w1, w̄1)/2) exp(−iφ(w2, w̄2)/2)〉α=(1/2,1/2)

=
√

2τ2

Z0
exp[π(w12 − w̄12)

2/8τ2][〈exp(iφ̂(w1, w̄1)/2) exp(−iφ̂(w2, w̄2)/2)〉

×
{
−|ϑ ′

1(w12/2)|2 +

(
π

τ2
+

π2(w12 − w̄12)
2

4τ 2
2

)
|ϑ1(w12/2)|2

+
π(w12 − w̄12)

2τ2
ϑ ′

1(w12/2)ϑ̄1(w̄12/2) − π(w12 − w̄12)

2τ2
ϑ1(w12/2)ϑ̄ ′

1(w̄12/2)

}
− i〈∂̄ φ̂(z̄) exp(iφ̂(w1, w̄1)/2) exp(−iφ̂(w2, w̄2)/2)〉
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× ϑ̄1(w̄12/2)

(
ϑ ′

1(w12/2) +
π(w12 − w̄12)

2τ2
ϑ1(w12/2)

)
− i〈∂φ̂(z) exp(iφ̂(w1, w̄1)/2) exp(−iφ̂(w2, w̄2)/2)〉
×ϑ1(w12/2)

(
ϑ̄ ′

1(w̄12/2) − π(w12 − w̄12)

2τ2
ϑ̄1(w̄12/2)

)
+ 〈∂φ̂(z)∂̄φ̂(z̄) exp(iφ̂(w1, w̄1)/2) exp(−iφ̂(w2, w̄2)/2)〉|ϑ1(w12/2)|2].

(C.12)

Only the correlators of the ‘free part’ of the boson remains to be determined. Its propagator
is

〈φ̂(z, z̄)φ̂(0, 0)〉 = − ln

ϑ1(z)

ϑ ′
1(0)


2

− π(z − z̄)2

2τ2
. (C.13)

Note that this propagator is the solution to the modified Green function satisfying

−�G(z, z̄) = 4πδ(2)(z) − 4π

τ2
. (C.14)

From equation (C.13), one can obtain

〈exp(iφ̂(w1, w̄1)/2) exp(−iφ̂(w2, w̄2)/2)〉 = exp

[
−π(w12 − w̄12)

2

8τ2

] ϑ ′
1(0)

ϑ1(w12)


1/2

.

(C.15)

Since

〈∂φ̂(z) exp[iφ̂(w1, w̄1)/2] exp[−iφ̂(w2, w̄2)/2]〉 = exp

[
1

4
〈φ̂(w1, w̄1)φ̂(w2, w̄2)〉

]
×〈∂φ̂(z) exp[i(φ̂(w1, w̄1) − φ̂(w2, w̄2))/2]

= i

2
exp

[
1

4
〈φ̂(w1, w̄1)φ̂(w2, w̄2)〉

]
× (〈∂φ̂(z)φ̂(w1, w̄1)〉 − 〈∂φ̂(z)φ̂c(w2, w̄2)〉), (C.16)

equation (C.13) leads to

〈∂φ̂(z) exp[iφ̂(w1, w̄1)/2] exp[−iφ̂(w2, w̄2)/2]〉

= − i

2
exp

[
−π(w12 − w̄12)

2

8τ2

] ϑ ′
1(0)

ϑ1(w12)


1/2

×
[
ϑ ′

1(z − w1)

ϑ1(z − w1)
− ϑ ′

1(z − w2)

ϑ1(z − w2)
− π(w12 − w̄12)

τ2

]
. (C.17)

Similarly,

〈∂̄ φ̂(z̄) exp[iφ̂(w1, w̄1)/2] exp[−iφ̂(w2, w̄2)/2]〉

= − i

2
exp

[
−π(w12 − w̄12)

2

8τ2

] ϑ ′
1(0)

ϑ1(w12)


1/2

×
[
ϑ̄ ′

1(z̄ − w̄1)

ϑ̄1(z̄ − w̄1)
− ϑ̄ ′

1(z̄ − w̄2)

ϑ̄1(z̄ − w̄2)
+

π(w12 − w̄12)

τ2

]
. (C.18)
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Lastly,

〈∂φ̂(z)∂̄φ̂(z̄) exp(iφ̂(w1, w̄1)/2) exp(−iφ̂(w2, w̄2)/2)〉 = −1

4
exp

[
−π(w12 − w̄12)

2

8τ2

]

×
 ϑ ′

1(0)

ϑ1(w12)


1/2 ϑ ′

1(z − w1)

ϑ1(z − w1)
− ϑ ′

1(z − w2)

ϑ1(z − w2)
− π(w12 − w̄12)

τ2


2

− π

τ2
exp

[
−π(w12 − w̄12)

2

8τ2

] ϑ ′
1(0)

ϑ1(w12)


1/2

. (C.19)

The second term of this equation comes from the fact that from equation (C.13), 〈∂φ̂(z)∂̄φ̂(z̄)〉
is actually nonzero.

Inserting equations (C.15), (C.17), (C.18) and (C.19) into equation (C.12) gives

〈∂φ(z)∂̄φ(z̄) exp(iφ(w1, w̄1)/2) exp(−iφ(w2, w̄2)/2)〉α=(1/2,1/2) = −
√

2τ2

Z0

 ϑ ′
1(0)

ϑ1(w12)


1/2

×
ϑ ′

1(w12/2) +
1

2
ϑ1(w12/2)

(
ϑ ′

1(z − w1)

ϑ1(z − w1)
− ϑ ′

1(z − w2)

ϑ1(z − w2)

)
2

. (C.20)

Similarly,

〈∂φ(z)∂̄φ(z̄) exp(−iφ(w1, w̄1)/2) exp(iφ(w2, w̄2)/2)〉α=(1/2,1/2) = −
√

2τ2

Z0

 ϑ ′
1(0)

ϑ1(w12)


1/2

×
ϑ ′

1(−w12/2) − 1

2
ϑ1(−w12/2)

(
ϑ ′

1(z − w1)

ϑ1(z − w1)
− ϑ ′

1(z − w2)

ϑ1(z − w2)

)
2

. (C.21)

Equations (C.20) and (C.21), together with equations (C.2) and (C.3), lead to the following
result stated in section 3.2:

〈ψ(z)σ (w1)σ (w2)〉α=(1/2,1/2) ∝
[

1

ϑ1(w12)

]1/8

×
[
ϑ ′

1(w12/2) +
1

2
ϑ1(w12/2)

(
ϑ ′

1(z − w1)

ϑ1(z − w1)
− ϑ ′

1(z − w2)

ϑ1(z − w2)

)]1/2

. (C.22)
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